Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Virtual Staining of Defocused Autofluorescence Images of Unlabeled Tissue Using Deep Neural NetworksDeep learning-based virtual staining was developed to introduce image contrast to label-free tissue sections, digitally matching the histological staining, which is time-consuming, labor-intensive, and destructive to tissue. Standard virtual staining requires high autofocusing precision during the whole slide imaging of label-free tissue, which consumes a significant portion of the total imaging time and can lead to tissue photodamage. Here, we introduce a fast virtual staining framework that can stain defocused autofluorescence images of unlabeled tissue, achieving equivalent performance to virtual staining of in-focus label-free images, also saving significant imaging time by lowering the microscope’s autofocusing precision. This framework incorporates a virtual autofocusing neural network to digitally refocus the defocused images and then transforms the refocused images into virtually stained images using a successive network. These cascaded networks form a collaborative inference scheme: the virtual staining model regularizes the virtual autofocusing network through a style loss during the training. To demonstrate the efficacy of this framework, we trained and blindly tested these networks using human lung tissue. Using 4× fewer focus points with 2× lower focusing precision, we successfully transformed the coarsely-focused autofluorescence images into high-quality virtually stained H&E images, matching the standard virtual staining framework that used finely-focused autofluorescence input images. Without sacrificing the staining quality, this framework decreases the total image acquisition time needed for virtual staining of a label-free whole-slide image (WSI) by ~32%, together with a ~89% decrease in the autofocusing time, and has the potential to eliminate the laborious and costly histochemical staining process in pathology.more » « less
-
Shaked, Natan T.; Hayden, Oliver (Ed.)We report label-free, in vivo virtual histology of skin using reflectance confocal microscopy (RCM). We trained a deep neural network to transform in vivo RCM images of unstained skin into virtually stained H&E-like microscopic images with nuclear contrast. This framework successfully generalized to diverse skin conditions, e.g., normal skin, basal cell carcinoma, and melanocytic nevi, as well as distinct skin layers, including the epidermis, dermal-epidermal junction, and superficial dermis layers. This label-free in vivo skin virtual histology framework can be transformative for faster and more accurate diagnosis of malignant skin neoplasms, with the potential to significantly reduce unnecessary skin biopsies.more » « less
-
We present a method to generate multiple virtual stains on an image of label-free tissue using a single deep neural network, which is fed with the autofluorescence images of the unlabeled tissue alongside a user-defined digital-staining matrix. Users can indicate which stain to apply on each pixel by editing the digital-staining matrix and blend multiple virtual stains, creating entirely new stain combinations.more » « less
-
Volpe, Giovanni; Pereira, Joana B.; Brunner, Daniel; Ozcan, Aydogan (Ed.)Reflectance confocal microscopy (RCM) can provide in vivo images of the skin with cellular-level resolution; however, RCM images are grayscale, lack nuclear features and have a low correlation with histology. We present a deep learning-based virtual staining method to perform non-invasive virtual histology of the skin based on in vivo, label-free RCM images. This virtual histology framework revealed successful inference for various skin conditions, such as basal cell carcinoma, also covering distinct skin layers, including epidermis and dermal-epidermal junction. This method can pave the way for faster and more accurate diagnosis of malignant skin neoplasms while reducing unnecessary biopsies.more » « less
-
The immunohistochemical (IHC) staining of the human epidermal growth factor receptor 2 (HER2) biomarker is widely practiced in breast tissue analysis, preclinical studies, and diagnostic decisions, guiding cancer treatment and investigation of pathogenesis. HER2 staining demands laborious tissue treatment and chemical processing performed by a histotechnologist, which typically takes one day to prepare in a laboratory, increasing analysis time and associated costs. Here, we describe a deep learning-based virtual HER2 IHC staining method using a conditional generative adversarial network that is trained to rapidly transform autofluorescence microscopic images of unlabeled/label-free breast tissue sections into bright-field equivalent microscopic images, matching the standard HER2 IHC staining that is chemically performed on the same tissue sections. The efficacy of this virtual HER2 staining framework was demonstrated by quantitative analysis, in which three board-certified breast pathologists blindly graded the HER2 scores of virtually stained and immunohistochemically stained HER2 whole slide images (WSIs) to reveal that the HER2 scores determined by inspecting virtual IHC images are as accurate as their immunohistochemically stained counterparts. A second quantitative blinded study performed by the same diagnosticians further revealed that the virtually stained HER2 images exhibit a comparable staining quality in the level of nuclear detail, membrane clearness, and absence of staining artifacts with respect to their immunohistochemically stained counterparts. This virtual HER2 staining framework bypasses the costly, laborious, and time-consuming IHC staining procedures in laboratory and can be extended to other types of biomarkers to accelerate the IHC tissue staining used in life sciences and biomedical workflow.more » « less
-
null (Ed.)In an age where digitization is widespread in clinical and preclinical workflows, pathology is still predominantly practiced by microscopic evaluation of stained tissue specimens affixed on glass slides. Over the last decade, new high throughput digital scanning microscopes have ushered in the era of digital pathology that, along with recent advances in machine vision, have opened up new possibilities for Computer-Aided-Diagnoses. Despite these advances, the high infrastructural costs related to digital pathology and the perception that the digitization process is an additional and nondirectly reimbursable step have challenged its widespread adoption. Here, we discuss how emerging virtual staining technologies and machine learning can help to disrupt the standard histopathology workflow and create new avenues for the diagnostic paradigm that will benefit patients and healthcare systems alike via digital pathology.more » « less
An official website of the United States government
